
CMSC838L - Final report

Arjun Vedantham
Yusuf Bham

May 2024

1 Introduction and Motivation
Digital signal processing techniques are extremely important in telecommunications, com-
puter vision, and a number of other related fields. In particular, digital signal processing
techniques form a key component behind the idea of software defined radio (SDR), which
refers to analyzing digital samples that represent radio signals with software, instead of dis-
crete hardware components that operate over signals in analog formats. Software defined
radio presents a notable improvement in flexibility for radio engineers, and removes the
need for specialized hardware components - instead, new signal demodulation techniques or
formats can be deployed just through a simple software update.

SDR users typically define signal processing pipelines using platforms like GNURadio.
GNURadio presents a graphical format for creating these pipelines, with discrete blocks
representing a signal source, signal sink, or an intermediate step in the processing pipeline.
As an example, see the "flowgraph" (as called in GNURadio’s documentation) below. This
starts by instantiating a signal source from an RTL-SDR (a type of hobbyist SDR that can
be used over USB with consumer PCs), and sets both a sampling rate (32000 Hz) and a
listening frequency (signals at 433 MHz). From here, these samples are fed into a low pass
filter block (which smooths out high frequency noise in the signal), and the resulting signal
is transformed into a stream that is passed to a GUI block that graphs the signal, using a
Fast Fourier Transform (FFT) to move the signal into the frequency domain.

This simple flowgraph is stored in an XML format, and is used by GNURadio’s backend
to generate a Python script that actually runs the defined processing pipeline. In addition,
there are also C/C++ modules loaded into the runtime system for low level tasks - for
instance, a USB driver for the SDR.

1

1.1 Problems Identified with State of the Art

There are number of problems with this current approach. First, GNURadio’s practice of
emitting Python scripts means that parallelism is limited on two fronts - first, because of lan-
guage design choices (Python’s infamous "global interpreter lock", which essentially forbids
runtime concurrency), and also because we are ultimately running this script on standard PC
hardware, which uses an inherently sequential von Neumann architecture. Additionally, as
previously mentioned, there is also an extensive library of C/C++ modules, and the imple-
mentation of these modules are opaque to the Python-level code generated by GNURadio’s
flowgraph compiler.

As such, we identified two research questions that we aimed to answer in this project:

• Could we use hardware acceleration to get better performance and greater parallelism
for DSP applications?

• Could we design a language that is more conducive to defining correct DSP pipelines?

2 Literature Review
We started by conducting a literature review of existing languages designed for DSP prob-
lems.

2.1 Ziria

One of the first papers we considered as Ziria [8], a domain specific language that was
designed to aid development in implementations of the physical layer of wireless protocols.
Ziria presented a functional language design syntax, and was specifically intended for wireless
protocol implementations on IOT hardware. As such, it contained many primitives that we
thought would be important to add to our language - for instance, an "FFT" primitive
function. However Ziria had a key limitation - it was designed for standard CPUs, which
meant that there were still parallelism limitations.

2

2.2 Calyx

One technique generally used for hardware acceleration for specialized applications like this is
to deploy them to FPGAs. One example of this was the Catapult paper that we read in class,
where Microsoft deployed FPGAs to accelerate running PageRank as part of their Bing server
infrastructure. However, FPGAs are notoriously difficult to program, and generally require
extremely fine-grained circuit configurations written in a hardware description language like
Verilog.

Calyx [7] is an intermediate representation for compilers developed by the CAPRA re-
search group at Cornell. It defines circuits in three distinct parts - a collection of memories
(consisting of combinational memories/ flip-flops and registers), wire groups (which denote
assignments between different memory components in the circuit), and a statically defined
control schedule that orders wire assignments. Calyx has already been used in the Filament
HDL, another domain specific language project from the CAPRA group that incorporated
signal timing into the language’s type system.

3 Technical Contribution
We decided to use the Calyx IR and design a more general, hardware acceleratable language
for DSP tasks, called Zinnia. 1 We also considered emitting circuits using CIRCT, the
LLVM framework that allows compilers to generate MLIR that is subsequently lowered to
a Verilog hardware description, however we quickly found that CIRCT lacked the project
maturity needed to develop even a basic language around it. This included no binaries to
link against, thus requiring us to compile a large subset of the LLVM project, which was
not practical. Calyx also had better documentation for its IR, and a small standard library
of memory cells that could be easily integrated into circuits synthesized when the compiler
lowers from the IR to a Verilog hardware description.

3.1 Parsing and Typing

Zinnia’s parsing is a fairly standard approach. We used the Rust parser-combinator library
chumsky for both the tokenization and subsequent parsing steps.

Zinnia is backed by a bidirectional type system, heavily inspired by Complete and Easy
Bidirectional Typing for Higher-Rank Polymorphism and Purescript [2]. Also similarly to
Purescript, while the system is based on CAEBDT, our system doesn’t use the “main”
takeaway of the paper – an ordered context, and stays with a more simple one. This was
largely due to familiarity, and in the future we would like to rewrite it to use ordered contexts.
The choice of a bidirectional type system stems from its ease of extensibility compared to
HM, which is the more common choice for a language like this. This extensibility allows us
to more easily add features like linear typing in the future, which is important in this space
as it means we can keep the pure and functional aspect, while still preserving performance
and memory constraints. Currently types are restricted to functions and primitives, just

1Named "Zinnia" because "calyx" refers to the petals of a flower and zinnias are a type of flower. Plus
it sounds like Ziria.

3

due to time constraints. General universal quantification is supported, but access to it is
currently limited to the scan primitive. While generics over types are generally supported,
being generic over a value is currently restricted to the vector primitive.

Full semantics and syntax for our language can be found at the end of our report.

3.1.1 Ease of Use

One key consideration when designing the typechecker and parser was support for rich error
reports. The parser has support for error backtracking, allowing for better reports on syntax.
Similarly, the typechecker preserves as much location info as possible in order to give full-
featured errors.

Figure 1: An error report for mismatched operands

3.2 Code Generation

The compiler that we wrote for Zinnia traverses the AST recursively. Since there is no
concept of dynamic memory allocation for circuits, we focused on generating the required
memories for the circuit first.

At the top level, "let" bindings are used to generate register memories (for integers)
and combinational memories (for vectors). For constant values, we use Calyx’s "structure"
macro to instantiate a "constant" register with the requried value at compile time, which
is subsequently removed in the process of optimization and lowering to Verilog. Variable
bindings are stored in a hashmap and are accessed using either the component name (which
is guaranteed to be unique through the Calyx frontend API) or the user-defined variable
name.

For binary operations or if expressions, we need to use comparator primitives and wire
them correctly - to do this, we call the memory generation function on each of the parame-
ters of the operation, and then use a "wire" generation function which generates assignments
between the inputs and outputs of the memories and logical primitives. After this is com-
plete, we generate a small schedule of operations depending on the subexpression that we are
compiling, using the Calyx "seq" block to sequentially order operations (e.g. ensuring that
a register memory gets its constant value before the addition actually takes place). Finally,
the top most register memory’s value is copied into a specially instantiated combinational
memory. This is because register memories in Calyx do not have latching/persistence guar-

4

antees, however, values in combinational/vector memories can be examined as part of the
circuit simulation.

(let ((x, 10), (y, 8)) (+ x y))

Let

Binding (Id, Value)
Binop(Id, Id)

x: reg0: 10

y: reg1: 8

adder

adder_res

res_mem

Figure 2: Simplified compilation/memory instantiation flow for a Zinnia program.

3.3 Supporting Parallelization in Compilation

One of the main goals of our DSL was to improve parallelism. While Calyx has a "par"
primitive for parallelizing parts of the circuit, Zinnia currently only generates circuits us-
ing the "seq" ("sequential") control flow keyword for easier debugging and testing. Even
though parallelism at the user level is limited, we still hoped to expose some of the potential
parallel speedups through the use of a function primitive that could be used to get implicit
parallelism.

5

3.3.1 Prefix Sums Scan

To expose some parallelism without explicitly supporting compiling using the "par" control
flow block, we implemented a version of parallel scan using the prefix sums algorithm [1]. This
primitive takes a reference to a vector with 8 integers and performs the addition operation,
returning a modified array where the latter half of the array contains the scan result.

This function was supposed to be invoked as a primitive within the language, with the
compiler inlining a separate Calyx component whose input memories would be populated
with a reference to the vector supplied by the caller. However, while we were able to test the
scan component as a separate circuit generated from our hand-written IR code, we were not
able to fully resolve linking issues that would allow us to pass memories by reference into
subcomponents.

Figure 3: Screenshot of the final state of the prefix sums array - a separate vector memory is
instantiated in the IR implementation to track the intermediate values as they flow up and
down the prefix-sums tree.

4 Evaluation
We decided to evaluate our language in three different ways: correctness testing, scalability
testing, and hardware testing.

4.1 Correctness Testing

To verify the correctness of the language, we attmepted to use the Cocotb RTL testing
framework and the Icarus Verilog simulator. This allows us to run a simulated version of the
circuit’s clock and write unit tests around elements of the circuits that we generate. Although
we did not have time to implement extensive tests, we were able to informally verify correct

6

Figure 4: Example timing diagram for the program shown in Figure 1. The operands
(represented in hex form here) are loaded into reg0 and reg1, before being loaded into the
"left" and "right" inputs of the combinational adder. The adder register’s result (5th line
down) is then moved into the "output" combinational memory using its "write_data" line.
Finally, the last line displays the clock signal for the whole circuit.

execution using unit tests for the binary operations supported by the language, as well as
correct outputs values for the scan primitive (which was tested separately since we could
not link this into the language easily) through Icarus Verilog. We were also able to generate
timing diagrams that we could view with GTKWave, and this showed that values used
during the circuit’s evaluation were being loaded into registers correctly. However, we would
have wanted to use randomized testing with cocotb to be more confident in our compiler’s
correctness.

4.2 Scalability Testing

Second, we wanted to test the scalability of our language. For this, we focused on evaluating
the "scan" primitive, since it is the main way end-users would be able to obtain parallelism
through the language (at least, as it is currently implemented). We found that in simulation,
our parallel scan implementation always took 71 cycles to generate outputs, given a set of
8 integers to iterate over. While parallel scan theoretically provides work bounds of O(n)
and span bounds of O(lg(n)), in practice the work and span bounds of our implementation
are worse. This is because we were not sure if it was possible to instantiate an arbitrarily
high number of registers, so we focused on using the combinational memory primitives to
hold intermediate values (particularly between the "sweep-up" and "sweep-down" phases of
parallel scan). Combinational memory primitives in the Calyx IR are exclusive read/write
memory cells, and take at least one cycle to set the data address and read the stored value
out of the memory into a register. This restriction essentially limited the parallelism that
we could achieve to only a few steps of the algorithm - specifically, summing values between
nodes at each level of the prefix sums tree, since the additions were purely combinational
and depended only on values in registers that were ready to go at the last cycle.

4.3 Physical Testing

We hoped to eventually deploy circuits that were synthesized using Zinnia to a Lattice
Icestick FPGA. This FPGA can be used with consumer devices over a USB connection,
and has a large library of open source tooling. This includes the Yosys synthesis toolkit
(which handles transforming high level Verilog hardware descriptions into lower level RTL
circuits), the nextpnr place and route tool (which handles connections between logic units
on the FPGA), and iceprog, an open source programming tool that could deploy circuits

7

with complete routing to the flash memory on-board the Icestick.
Circuits synthesized by Calyx include three signals by default - a "go" line, which when

activated, activates the circuit, a "clk" (clock) line, which handles cycle-level signalling for
the sequential logic elements of the circuit, and a "reset" line, which can be used to reset
the circuit while active.

In order to actually use the synthesized circuits, the "go" line must be pulled to logical
high, and while the reset lines needed to be set to logical low, and the clock line must be
tied to the 12 MHz oscillator built into the Icestick. Values for the "scan" primitive could
then be loaded in from the Icestick’s block RAM module.

To support dynamically loading values into block RAM, we wrote a small serial commu-
nication driver for the Icestick. Specifically, this was a form of one way (half-duplex) SPI,
with an Arduino serving as the primary device on the SPI bus, and the Icestick serving as the
secondary device. We chose SPI because it is relatively easy to implement on the receiving
side (in fact, a shift register is enough to receive data transmitted over the data line). While
testing the SPI driver, we wanted to use an external clock source to control the speed of
data transmission, and ensure that the Icestick was sampling the data line in phase with
the transmitting device’s clock (in this case an Arduino). Unfortunately, setting the clock
line for the circuit loaded onto the FPGA also sets the clock line for the USB programmer
chip, which requires a 12MHz signal in order to function correctly. This misconfiguration
prevented us from loading new circuits onto the FPGA, and required us to use simulation
as our primary evaluation method instead.

Figure 5: Half duplex SPI waveform, where an Arduino would have controlled the SCK and
SDO lines and the FPGA would bit shift the received values in block RAM.
[6]

5 Conclusion
In the end, we were able to implement a version of the scan primitive in the Calyx IR,
implement a bidirectional typing system, add some basic language features into our language,

8

and use external circuit verification and simulation tools to show that our circuits performed
as the high level program specified.

However, there is still room for improvement, both in terms of feature support and
performance - we do not have support for looping structures, even though the Calyx IR
supports it. Additionally, our parallelism benefits are limited by the fact that we can only
really exploit the parallelism present in the hardware through the scan primitive, even though
Calyx supports parallelized control schedules. While part of this is due to limitations in the
Calyx standard library, future libraries could be used to enable concurrent read/exclusive
write accesses to these memories instead of the current exclusive read/write access pattern.

We were also not able to show our circuits running on real hardware, which was the ulti-
mate goal of the project. Our current version of Zinnia would not be usable with real software
defined radio/signal processing workloads since our hardware interfaces are not finished yet.
However, we feel that there is enough expressivity in the language (e.g. customizable bit
widths, a clean and functional syntax) that could eventually make it practical for creating
correct signal processing pipelines.

One obstacle that we did not foresee was the difficulty of working with the Calyx IR from
Rust. While LLVM’s CIRCT project has a robust Rust API, it seems that the authors of
the Calyx IR primarily want language authors to use their IR from a Python builder module
or the CIRCT toolchain, even though the Filament HDL (which was authored by the same
research group and uses Calyx as its IR) is also written in Rust. For some issues, like linking
against the combinational memory primitives or inlining other components, the Rust library
documentation was so poor that we ended up looking through Filament’s implementation
and using that as a guide for building our compiler.

Altogether, this was a very interesting exploration into building a domain specific lan-
guage that interacted so closely with hardware, and was a great way to get experience with
compilers, parallel algorithms, type systems, and using FPGAs. We hope to continue work-
ing on Zinnia as a hobby research project over the summer.

The codebase for Zinnia is available on GitHub: https://github.com/javathunderman/
zinnia

6 Syntax
⟨decl⟩ ::= let ⟨ident⟩: ⟨ty⟩ = ⟨expr⟩;

⟨ident⟩ ::= (⟨letter⟩ | _) {⟨letter⟩ | 0..9 | _}

⟨ty⟩ ::= ()
| bool
| ⟨num-ty⟩
| Vec<⟨num-ty⟩, {0..9}+>

⟨num-ty⟩ ::= (u | i) {0..9}+

9

https://github.com/javathunderman/zinnia
https://github.com/javathunderman/zinnia

⟨expr⟩ ::= ()
| ⟨bool-lit⟩
| ⟨int-lit⟩
| ⟨vec-lit⟩
| ({⟨expr⟩}+)
| (⟨expr⟩ ⟨bop⟩ ⟨expr⟩)
| (let (⟨binders⟩) ⟨expr⟩)
| (if ⟨expr⟩ ⟨expr⟩ ⟨expr⟩)

⟨binders⟩ ::= ⟨binder⟩
| ⟨binder⟩, ⟨binders⟩

⟨binder⟩ ::= (⟨ident⟩, ⟨expr⟩)
| (⟨ident⟩: ⟨ty⟩, ⟨expr⟩)

⟨num-cmp-op⟩ ::= >
| >=
| <
| <=

⟨num-op⟩ ::= +
| -
| *
| /

⟨cmp-op⟩ ::= ==
| !=

⟨bop⟩ ::= ⟨num-op⟩
| ⟨num-cmp-op⟩
| ⟨cmp-op⟩

⟨int-lit⟩ ::= [-]{0..9}+
| [-]{0..9}+ (u | i) {0..9}+

⟨bool-lit⟩ ::= true
| false

⟨vec-lit⟩ ::= [⟨vec-elems⟩]

10

⟨vec-elems⟩ ::= ⟨int-lit⟩
| ⟨int-lit⟩, ⟨vec-elems⟩

7 Typing

Types A,B,C ::= () | α | α̂

| ∀α.A
| A1, . . . , An → B

Monotypes τ, σ, π ::= () | α | α̂

| τ1, . . . , τn → σ

| ϑ | ϑi,s | ϑ̂ | ϑ̂i,s

| Vec(τ, c) | V̂ec
| Bool

Contexts Γ, ∆,Θ ::= · | Γ, α | Γ, (x : A)

Figure 6: Syntax of types, monotypes, and contexts.

Γ ⊢ A Under context Γ , type A is well-formed.

Γ
n

⊢
i=1

A Under context Γ , types {Ai}
n
1 are well-formed.

Γ ⊢ ()
UnitWF

Γ ⊢ Bool
BoolWF

n > 0

Γ ⊢ ϑi
n

SNumWF
n > 0

Γ ⊢ ϑu
n

UNumWF

Γ ⊢ τ num(τ) c > 0

Γ ⊢ Vec(τ, c)
VecWF

Γ
n

⊢
i=1

Ai Γ ⊢ B

Γ ⊢ A1, . . . , An → B
ArrowWF

Γ, α ⊢ A

Γ ⊢ ∀α.A
ForAllWF

Γ ⊢ A1

...
Γ ⊢ An

Γ
n

⊢
i=1

A
WFs

Figure 7: Well-formedness of types

11

Γ ⊢ A ∩ B ⇒⇒ C ⊣ ∆ Under context Γ , types A and B unify to C with output context ∆.

Γ ⊢ Ai ∩ Bi
n⇒⇒
i=1

Ci ⊣ ∆ Under context Γ , types Ai and Bi unify to Ci with output context ∆.

Γ ⊢ A

Γ ⊢ A ∩ A ⇒⇒ A ⊣ Γ
EqUni

Γ ⊢ Vec(τ, c) Γ ⊢ Vec(σ, c) Γ ⊢ τ ∩ σ ⇒⇒ π ⊣ ∆

Γ ⊢ Vec(τ, c) ∩ Vec(σ, c) ⇒⇒ Vec(π, c) ⊣ ∆
VecUni

Γ ⊢ A1, . . . , An → RA Γ ⊢ B1, . . . , BN → RB

Γ ⊢ Ai ∩ Bi
n⇒⇒
i=1

Ci ⊣ ∆ Γ ⊢ RA ∩ RB ⇒⇒ RC ⊣ ∆

Γ ⊢ A1, . . . , An → RA ∩ B1, . . . , Bn → RB ⇒⇒ C1, . . . , Cn → RC ⊣ ∆
ArrowUni

Γ ⊢ α̂ Γ ⊢ β̂

Γ ⊢ α̂ ∩ β̂ ⇒⇒ α̂ ⊣ ∆
ExAnyUni

Γ ⊢ ϑ̂1 Γ ⊢ ϑ̂2

Γ ⊢ ϑ̂1 ∩ ϑ̂2 ⇒⇒ ϑ̂1 ⊣ ∆
ExUNumUni

Γ ⊢ ϑ̂s1,c1 Γ ⊢ ϑ̂s2,c2
s3 = s1 ∧ s2 c3 = max(c1, c2)
Γ ⊢ ϑ̂s1,c1 ∩ ϑ̂s2,c2 ⇒⇒ ϑ̂s3,c3 ⊣ ∆

ExSSNumUni

12

Γ ⊢ ϑ̂s1,c1 Γ ⊢ ϑ̂

Γ ⊢ ϑ̂s1,c1 ∩ ϑ̂ ⇒⇒ ϑ̂s1,c1 ⊣ ∆
ExSUNumUni

Γ ⊢ V̂ec1 Γ ⊢ V̂ec2

Γ ⊢ V̂ec1 ∩ V̂ec2 ⇒⇒ V̂ec1 ⊣ ∆
ExVecUni

Γ ⊢ V̂ecα Γ ⊢ Vec(τ, c)

Γ ⊢ V̂ecα ∩ Vec(τ, c) ⇒⇒ Vec(τ, c) ⊣ ∆
ExVecCUni

Γ ⊢ ϑ̂ Γ ⊢ ϑs,c

Γ ⊢ ϑ̂ ∩ ϑs,c ⇒⇒ ϑs,c ⊣ ∆
ExUNumCUni

Γ ⊢ ϑ̂s1,c1 Γ ⊢ ϑs2,c2
¬s1 ∨ s2 c1 ≤ c2

Γ ⊢ ϑ̂s1,c1 ∩ ϑs2,c2 ⇒⇒ ϑs2,c2 ⊣ ∆
ExSNumCUni

Γ ⊢ α̂ Γ ⊢ α

Γ ⊢ α̂ ∩ α ⇒⇒ α ⊣ ∆
ExAnyCUni

Γ ⊢ ∀α.A Γ ⊢ B Γ, α̂ ⊢ A[α := α̂] ∩ B ⇒⇒ B ⊣ ∆

Γ ⊢ ∀α.A ∩ B ⇒⇒ B ⊣ ∆
ForAllUni

Γ ⊢ A ∩ B ⇒⇒ C ⊣ ∆

Γ ⊢ B ∩ A ⇒⇒ C ⊣ ∆
CommutUni

Γ ⊢ A1 ∩ B1 ⇒⇒ C1 ⊣ Θ1

Θ1 ⊢ A2 ∩ B2 ⇒⇒ C2 ⊣ Θ2

...
Θn−1 ⊢ An ∩ Bn ⇒⇒ Cn ⊣ Θn

Γ ⊢ Ai ∩ Bi
n⇒⇒
i=1

Ci ⊣ Θn

Unis

Figure 8: Unification of types

13

Γ ⊢ e ⇐ A ⊣ ∆ Under input context Γ , e checks against input type A, with output context ∆

Γ ⊢ e ⇒ A ⊣ ∆ Under input context Γ , e synthesizes output type A, with output context ∆

Γ ⊢ ei
n⇒
i=1

Ai ⊣ ∆ Under input context Γ , {ei}n1 synthesizes types {Ai}
n
1 , with output context ∆

Γ ⊢ e ⇒ A ⊣ Θ Θ ⊢ A ∩ B ⇒⇒ C ⊣ ∆

Γ ⊢ e ⇐ B ⊣ ∆
UniToCheck

Γ ⊢ Γ [x] ⇒ A ⊣ ∆

Γ ⊢ x ⇒ A ⊣ ∆
IdSyn

x = true∨ x = false

Γ ⊢ x ⇒ Bool ⊣ Γ
BoolSyn

x = NuC C > 0 0 ≤ N < 2C

Γ ⊢ x ⇒ ϑu,C ⊣ Γ
SNumLitAnnSyn

x = NiC C > 0 −2C−1 ≤ N ≤ 2C−1 − 1

Γ ⊢ x ⇒ ϑi,C ⊣ Γ
UNumLitAnnSyn

x = N N ∈ Z sz = min-width(N) sgn = sign(N)

Γ ⊢ x ⇒ ϑ̂sgn,sz ⊣ ∆
NLitSyn

Γ ⊢ e ⇒ τ ⊣ ∆ ∆ ⊢ Vec(τ, 1)
Γ ⊢ [e] ⇒ Vec(τ, 1) ⊣ ∆

Vec1LitSyn

Γ ⊢ [e1, . . . , en] ⇒ Vec(τ, i) ⊣ Θ1

Θ1 ⊢ en+1 ⇒ σ ⊣ Θ2

Θ2 ⊢ σ ∩ τ ⇒⇒ π ⊣ ∆

Γ ⊢ [e1, . . . , en+1] ⇒ Vec(π, i+ 1) ⊣ ∆
VecLitSyn

op ∈ [+,−, /, ·]
Γ ⊢ l ⇒ τ ⊣ Θ Γ ⊢ r ⇒ σ ⊣ Θ

num(τ) num(σ)
Θ ⊢ τ ∩ σ ⇒⇒ π ⊣ ∆

Γ ⊢ l op r ⇒ π ⊣ ∆
NumFieldOpSyn

14

op ∈ [<,≤, >,≥]
Γ ⊢ l ⇒ τ ⊣ Θ Γ ⊢ r ⇒ σ ⊣ Θ

num(τ) num(σ)
Θ ⊢ τ ⇐ σ ⊣ ∆

Γ ⊢ l op r ⇒ Bool ⊣ ∆
NumCmpOpSyn

op ∈ [=, ! =]
Γ ⊢ l ⇒ τ ⊣ Θ Γ ⊢ r ⇒ σ ⊣ Θ

Θ ⊢ τ ⇐ σ ⊣ ∆

Γ ⊢ l op r ⇒ Bool ⊣ ∆
EqOpSyn

Γ ⊢ f ⇒ F ⊣ Θ1

Θ1 ⊢ ei
n⇒
i=1

Ai ⊣ Θ2

Θ2 ⊢ F ∩ Ai, . . . , An → RA ⇒⇒ Bi, . . . , Bn → RB ⊣ ∆

Γ ⊢ (f e1 . . . en) ⇒ RB ⊣ ∆
CallSyn

Γ ⊢ c ⇐ Bool ⊣ Θ1

Θ1 ⊢ br_t ⇒ A ⊣ Θ2 Θ2 ⊢ br_f ⇒ B ⊣ Θ3

Θ3 ⊢ A ∩ B ⇒⇒ C ⊣ ∆

Γ ⊢ (if c br_t br_f) ⇒ C ⊣ ∆
IfSyn

Γ ⊢ b ⇒ B ⊣ ∆

Γ ⊢ (let () b) ⇒ B ⊣ ∆
Let0Syn

Γ ⊢ e1 ⇒ A ⊣ Θ

Θ, (x : A) ⊢ (let (...) b) ⇒ B ⊣ ∆

Γ ⊢ (let ((x, e_1) ...) b) ⇒ B ⊣ ∆
LetSyn

Γ ⊢ e1 ⇐ T ⊣ Θ

Θ, (x : T) ⊢ (let (...) b) ⇒ B ⊣ ∆

Γ ⊢ (let ((x: T, e_1) ...) b) ⇒ B ⊣ ∆
LetAnnSyn

Γ ⊢ scan ⇒ ∀Vecα.Vecα → Vecα ⊣ ∆
ScanSyn

Figure 9: Inference and checking of types

15

8 Zinnia Examples

l e t main : u8 = (l e t ((x : Vec<i8 , 8>, [1 , 4 , 5 , 7 , 1 , 2 , 3 , 4])) 2) ;

Example of using vector types - "main" is defined as returning an 8 bit integer, x is defined
as getting a vector of eight 8-bit integers, and the two is returned as the result.

l e t main : i 8 = (l e t ((x : i8 , (+ 1u8 4 i 8))) (+ x 3)) ;

Example of a mismatch caught by the type checker - 1 (an unsigned int) and 4 (a signed int)
cannot be added together to get a signed int as a result.

16

References
[1] Guy E. Blelloch. Prefix Sums and Their Applications. CMU-CS-90-190. School of Com-

puter Science, Carnegie Mellon University, Nov. 1990.

[2] Jana Dunfield and Neelakantan R. Krishnaswami. “Complete and easy bidirectional
typechecking for higher-rank polymorphism”. In: Proceedings of the 18th ACM SIG-
PLAN international conference on Functional programming (2013). url: https://
api.semanticscholar.org/CorpusID:7586176.

[3] David Durst et al. “Type-directed scheduling of streaming accelerators”. In: Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. PLDI ’20: 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation. London UK: ACM, June 11, 2020, pp. 408–422.
isbn: 978-1-4503-7613-6. doi: 10.1145/3385412.3385983. url: https://dl.acm.
org/doi/10.1145/3385412.3385983 (visited on 05/14/2024).

[4] Matthew Gordon. µ: A Functional Programming Language for Digital Signal Processing.
Apr. 9, 2003. url: https://www.cs.unb.ca/tech- reports/honours- theses/
Matthew.Gordon-4997.pdf.

[5] Andrew Lenharth and Chris Lattner. CIRCT: Lifting hardware development out of the
20th century. Nov. 17, 2021. url: https://llvm.org/devmtg/2021-11/slides/2021-
CIRCT-LiftingHardwareDevOutOfThe20thCentury.pdf.

[6] Mathworks. Support SPI Communication. url: https://www.mathworks.com/help/
simulink/supportpkg/raspberrypi_ug/support-spi-communication.html.

[7] Rachit Nigam et al. “A compiler infrastructure for accelerator generators”. In: Pro-
ceedings of the 26th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. ASPLOS ’21: 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems. Virtual USA: ACM, Apr. 19, 2021, pp. 804–817. isbn: 978-1-4503-8317-2. doi:
10.1145/3445814.3446712. url: https://dl.acm.org/doi/10.1145/3445814.
3446712 (visited on 05/11/2024).

[8] Gordon Stewart et al. “Ziria: A DSL for Wireless Systems Programming”. In: Proceed-
ings of the Twentieth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS ’15: Architectural Support for Pro-
gramming Languages and Operating Systems. Istanbul Turkey: ACM, Mar. 14, 2015,
pp. 415–428. isbn: 978-1-4503-2835-7. doi: 10.1145/2694344.2694368. url: https:
//dl.acm.org/doi/10.1145/2694344.2694368 (visited on 05/11/2024).

17

https://api.semanticscholar.org/CorpusID:7586176
https://api.semanticscholar.org/CorpusID:7586176
https://doi.org/10.1145/3385412.3385983
https://dl.acm.org/doi/10.1145/3385412.3385983
https://dl.acm.org/doi/10.1145/3385412.3385983
https://www.cs.unb.ca/tech-reports/honours-theses/Matthew.Gordon-4997.pdf
https://www.cs.unb.ca/tech-reports/honours-theses/Matthew.Gordon-4997.pdf
https://llvm.org/devmtg/2021-11/slides/2021-CIRCT-LiftingHardwareDevOutOfThe20thCentury.pdf
https://llvm.org/devmtg/2021-11/slides/2021-CIRCT-LiftingHardwareDevOutOfThe20thCentury.pdf
https://www.mathworks.com/help/simulink/supportpkg/raspberrypi_ug/support-spi-communication.html
https://www.mathworks.com/help/simulink/supportpkg/raspberrypi_ug/support-spi-communication.html
https://doi.org/10.1145/3445814.3446712
https://dl.acm.org/doi/10.1145/3445814.3446712
https://dl.acm.org/doi/10.1145/3445814.3446712
https://doi.org/10.1145/2694344.2694368
https://dl.acm.org/doi/10.1145/2694344.2694368
https://dl.acm.org/doi/10.1145/2694344.2694368

	Introduction and Motivation
	Problems Identified with State of the Art

	Literature Review
	Ziria
	Calyx

	Technical Contribution
	Parsing and Typing
	Ease of Use

	Code Generation
	Supporting Parallelization in Compilation
	Prefix Sums Scan

	Evaluation
	Correctness Testing
	Scalability Testing
	Physical Testing

	Conclusion
	Syntax
	Typing
	Zinnia Examples

