
Zinnia
A (questionable) experiment in DSL design and parallel algorithms for signal 

processing

Yusuf Bham
Arjun Vedantham



Outline

Background

Language Design

Evaluation and Future Plans



Digital Signal Processing (DSP)

- In the past: discrete hardware 

components

- Nowadays: Process digital samples 

in software

- Example: Software defined radio

RTL-SDR



SDR Pipeline

Digital signal processing is great for flexibility and retargetability!



DSP Programming Approaches

- Generates long, hard to read 

Python scripts

- CPU-bound!



Issues

- CPU bound

- Python output stunts parallelism



A New Approach?

- Hardware acceleration?
- FPGAs

- Domain specific language?
- Better parallelization?

- Functional paradigm

- Compose filters



Ziria

- Similar premise

- Targeted CPUs instead of FPGAs

- Aimed at wireless systems programming



A New Approach?



Calyx?

Memory cells

Wires (assignments)

Control schedule

Intermediate representation (IR) for hardware 
generation

Sample Calyx program



Zinnia



Language Design - Overview

- Functional
- Easy composition

- Modular

- Amenable to parallelization

- Target: Calyx IR -> synthesizable SystemVerilog



Language Design - Typing

- Bidirectional type checker

- Inspired by “Complete and Easy 

Bidirectional Typechecking for 

Higher-Rank Polymorphism”

- Supports high levels of type 

inference

- Support for generics



Type Checking



Type Checking



Type Checking



Type Checking



Type Checking



Type Checking



Language Implementation - Scan

- Parallel scan/prefix sums

- Efficient for user-defined higher order functions
- Examples: 1D convolution, rejecting HF samples

Upsweep in parallel scan



Evaluation Plan

- Scalability

- Correctness

- Hardware deployment [reach]



Evaluation - Scalability

- Still evaluating

- Focus on cycle count in 

simulation
- Show that HLS overhead is 

minimal

- Work should grow with O(n)
- Scalability currently limited



Evaluation - Correctness

Circuit testing with cocotb

Adder circuit

Load op1

Load op2
op1 + op2

3 clock cycles

“scan” circuit

Vector of n 
elements

Vector of n 
elements

70 (?) clock cycles



Evaluation - Hardware

Serial

Reprogramming requires a stable clock signal



(Part of) the circuit DAG

Demo



Future Work/Wishlist

- Short term
- Finish evaluation

- Add functions and loops

- Long term
- Improve scan performance with in-place algorithm

- Greater parallelization (memory banking)

- Incorporate latency into the control schedule

- Linear typing

- Reuse vector storage

- Dependent types



Summary

- Functional, composable language for creating DSP circuits

- Implements bidirectional typing features

- Provides an easy way to parallelize workloads in hardware
- Parallel scan primitive



References

- https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapt
er-39-parallel-prefix-sum-scan-cuda

- https://chandrashek1007.medium.com/python-global-interpreter-lock-is-it-good
-or-bad-634d1c82b4fd

- https://dl.acm.org/doi/10.1145/2786763.2694368

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://chandrashek1007.medium.com/python-global-interpreter-lock-is-it-good-or-bad-634d1c82b4fd
https://chandrashek1007.medium.com/python-global-interpreter-lock-is-it-good-or-bad-634d1c82b4fd
https://dl.acm.org/doi/10.1145/2786763.2694368

	Zinnia
	Outline
	Digital Signal Processing (DSP)
	SDR Pipeline
	DSP Programming Approaches
	Issues
	A New Approach?
	Ziria
	A New Approach? (2)
	Calyx?
	Zinnia (2)
	Language Design - Overview
	Language Design - Typing
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Language Implementation - Scan
	Evaluation Plan
	Evaluation - Scalability
	Evaluation - Correctness
	Evaluation - Hardware
	Demo
	Future Work/Wishlist
	Summary
	References

