EEEEEEEEEEEE

(My) Uncovering Exploitable
Firmware Internship

TWOSIXTECH.COM



e About Me
e UEFI

o Background
m A brief history

Agenda m Supply chains

o Vulnerabilities

e HARDEN

o Detecting vulnerabilities
o Scaling up detection



(3 twosix

TECHNOLOGIES

About Me

* Originally from Allentown, PA
 Currently: University of Maryland at College Park
 Studying computer science
* Minor in robotics and autonomous systems
 Planning to graduate in Dec. 2023
* UMDLoop
* Avionics Systems Lead
 Telemetry for a tunnel boring machine

« Software and hardware for a Mars rover

TWOSIXTECH.COM 3



EEEEEEEEEEEE

Background on UEF!

TWOSIXTECH.COM



(3 twosix

TECHNOLOGIES

A Brief History

* PCs use firmware to initialize hardware/software
« Historically: [Legacy] BIOS (c. 1981)
* Limited functionality
» Address-constrained
* No support for fancy features

* Network boot? S

» Development was difficult + highly E
fiachipelsEEc e I _

» Today: UEFI (c. 2005)
» Universal Extensible Firmware Interface I;E“" \t\ ‘ \ \.ﬂ\ ’

TWOSIXTECH.COM 5



(3 twosix

TECHNOLOGIES

UEF]

* First developed by Intel (2005)

« A common standard

* Vendors implement independently
» Reference implementation: Tianocore EDK |l
* Not limited to just boot-time services
* Manages runtime kernel - hardware interaction

* Most UEFI drivers run in driver execution
environment (DXE)

 Equivalent to ring O/kernel mode

TWOSIXTECH.COM 6



TECHNOLOGIES

(3 twosix

UEFI Supply Chains

* Lots of different companies/organizations UEFI Specification
involved!

* Bug fixes take a long time to reach end-users
 Independent BIOS Vendors

Reference Implementation

* Original Design Manufacturers IBV
* Original Equipment Manufacturers

* How UEFI firmware is developed/distributed is
dependent on all of these organizations

« Annoying packaging practices (Dell )

Taken from Rylan’s JTB on UEFI (thanks Rylan)

TWOSIXTECH.COM 7


https://uefi.org/specifications
https://github.com/tianocore/edk2/

(3 twosix

TECHNOLOGIES

- Types
A
W * Double GetVar
* GetSet

UEFI Vulnerabilities - SMM Callouts

« SMM CommBuffer poisoned pointers

* In general

* Vulnerabilities are simple, but hard to find
because of the supply chain

TWOSIXTECH.COM



TECHNOLOGIES

(} twosix

Double GetVar & GetSet

* Runtime service that gets a value from NVRAM
* NVRAM - non-volatile RAM
* Persistent key/value storage for UEFI variables
» Takes a DataSize pointer
* Input: Size of the data buffer we are writing the variable value to
»  Qutput: # of bytes that the variable occupies
« (Can be longer than the buffer
* Returns an error if it is

 Two GetVariable calls without sanitization? Potential overflow!



TECHNOLOGIES

(3 twosix

GetSet

* Very similar to Double GetVar
« SetVariable
« Sets a value in NVRAM
« Consecutive calls to GetVariable and SetVariable without sanitization

* Exposes EFI variables

10



EEEEEEEEEEEE

Double GetVar & GetSet (cont.)




(3 twosix

TECHNOLOGIES

System Management Mode

« Xx86 processors have an execution mode called System Management
Mode (SMM)

* Runs highly privileged code

* (Can interact with all physical memory (even though it
shouldn’t)

*  Will run above hypervisors as well
« Equivalent to ring -2
* ring O: kernel space
* Mostly invisible to the OS

* |Invoked from the kernel, or from a hardware interrupt
* Can interact with SPI flash (and all other hardware)

 Install rootkits that can persist even after the OS is wiped!

12



(} twosix

TECHNOLOGIES

SMM vulnerabilities in UEFI

* Privilege escalation from driver execution environment (DXE) to SMM
« SMM callouts
« Executing code in SMM that lives outside of protected memory (SMRAM)
«  SMM CommBuffer vulns
«  CommBuffer
« Type that handles communication between SMM and DXE
* Copies variables into SMRAM
« Should check that all nested pointers in a CommBuffer are pointing into SMRAM

13



Mandatory Document Markings Go Here

(3 twosix

TECHNOLOGIES

How do we find vulnerabilities in UEFI?

N * Manual analysis (slow, requires expert knowledge)

&/

 Alternatively: Use static analysis
HARDEN

* Trace the flow of data to potentially vulnerable
callsites

* Fuzz testing (not scalable to an entire UEFI image)

 Build dataflow chains

« Use SMT solving to see if these chains can
be exploited

* (I don’t know how to do this part)

TWOSIXTECH.COM 14



TECHNOLOGIES

(} twosix

Finding SMM vulnerabillities...

* Find vulnerable UEFI drivers e —

File Action View Help

Structure

. .
Name Action Type Subtype Text
* Binarly writeups
Padding Padding Non-empty
» EfiSystemNvDataFvGuid Volume NVRAM
. . Padding Padding Non-empty
B6B79116-B118-43FD-298F-DA7CF4CC28E8 Volume Unknown
» Manual, expert analysis of UEFI drivers
Padding Padding Non-empty
372B56DF-CC9F-4817-AB97-0A10A92CEAAS Volume Unknown
Padding Padding Non-empty
° ~ EfiFirmwareFileSystem3Guid Volume FFSv3
S ~ 9E21FD93-9C72-4C15-8C4B-E77F1DB2D792 File Volume image
v LzmaCustomDecompressGuid Section GUID defined
Raw section Section Raw
. . ~Volume image section Section Volume image
~ A881D567-6CBO-4EEE-8435-2E72D33E45B5 Volume FFSv2
*  Download the firmware from the OEM site
» 60707C56-8B72-435B-AB8F-251C9COD2A34 File DXE driver 019A
» 171272DD-45CF-45E8-BCD9-F3891BF22975 File SMM module 018E

» 307D4A1D-DDD8-4E2F-AC68-D8B213C198FE File DXE driver 0198
B8DEFE6CA-2AF0-474E-9642-838282B3C982

- Decompress it with 7-zip (unless you’re Dell (x¢) o sepenoeny section et
*  UEFITool

« Tool that displays/extracts UEFI drivers in a firmware binary

UI section Section uI
Version section Section Version

- Extract the vulnerable driver, as identified by its GUID

15



TECHNOLOGIES

...In Ghidra?

* Open the extracted binary in Ghidra
* Run efiSeek

* Ghidra plugin that automatically types UEFI
structs

* Look for SMRAM descriptors

* Passed into the function that validates
whether pointers reference SMRAM

* Flag these callsites and trace up from
them

*  Problems
« Limited intermediate languages to reason over
» Ghidra API has poor documentation

» Lack of existing tooling

16



TECHNOLOGIES

(} twosix

...In Binary Ninja?

* (Arguably) better API with Python support
» Jython does not count, Ghidra!

« More intermediate representations to reason over
« Single static assignment

« More comprehensive internal tooling

« PILOT program: already did def/use chaining for vulnerability
analysis

» Create a pipeline for automated vulnerability analysis

« Get binaries, extract them, and run analysis passes over them

« Use SMT solving to prune the set of possible vulnerabilities

17



Binary Ninja-based Pipeline

Downloaded File

{.exe, .zip, ..}

Extractars
{7z, innoextract, ...}

1 (DXE Driver)

2 (DXE
Application)

%

3 (SMM Driver)

.. [PE Appli
etc)

2 {DXE
Application)

3 (SMM Driver)

.. [PE Application,

)]

1to many <
via binja tags

buffer overflow

buffer overflow

SMM callout

1016

TECHNOLOGIES

3 twosix

Vuinerabilities for
Transition /
Ve
Annotation

ites +

Transition Partner /

— SMT + i
S pruning —» UEFI Developer

[— VSCode Integration %
Metadata gratt

18



Def/Use Chaining

Find vulnerable callsites

Look for accesses to a particular byte offset
from the runtime services table

00840d6b

From a callsite:

jHUJm

040d41

Trace the definition of the parameter we
want (e.g. DataSize
Pointers

* Trace down

*  We don’t know how the value the
pointer is referencing will change

Functions

* |f we know what it does, trace up

)y TWO:!

TECHNOLOGIES

= rax_4#4->GetVariable @ mem#5(VariableName:




TECHNOLOGIES

(} twosix

Future Plans

- Static analysis is somewhat limited when it comes to cross-driver interaction
« Want to evaluate the composability of different vulnerabilities
*  More formal modeling?
«  Emulation?
« QEMU (OSS)
« Simics (Intel)
*  More closely replicates the underlying hardware
* Interrupts between different instructions (which QEMU can’t do)
* Leveraging the new tracing engine for SMM vulnerabilities
« Sort of implemented with Ghidra, but not well

 (Generalize to other CommBuffer vulnerabilities

20



(} twosix

TECHNOLOGIES

References & Other Resources

Rootkits and Bootkits
« Alex Matrosov (Binarly)
Sergey Bratus (DARPA PM for HARDEN)
* A Tour Beyond the BIOS

- Jiewen Yao (Intel)

» Also wrote Securing Firmware (on my reading list)
SentinelOne blog
Rylan’s excellent JTB from March on UEFI

21


https://edk2-docs.gitbook.io/a-tour-beyond-bios-mitigate-buffer-overflow-in-ue/

EEEEEEEEEEEE

Acknowledgements

- Jonathan Prokos (mentor for the summer)
- Jacob Denbeaux
» Michael Krasnitski

22



TWOSIXTECH.COM

$

twosiXx

TECHNOLOGIES

23



