
(My) Uncovering Exploitable 
Firmware Internship
Arjun Vedantham
2023 Summer Research Intern
TSE-EVS

TWOSIXTECH.COM



Agenda

● About Me

● UEFI
○ Background

■ A brief history

■ Supply chains

○ Vulnerabilities

● HARDEN
○ Detecting vulnerabilities

○ Scaling up detection



3TWOSIXTECH.COM

• Originally from Allentown, PA

• Currently: University of Maryland at College Park

• Studying computer science

• Minor in robotics and autonomous systems

• Planning to graduate in Dec. 2023

• UMDLoop

• Avionics Systems Lead

• Telemetry for a tunnel boring machine

• Software and hardware for a Mars rover

About Me



Background on UEFI

TWOSIXTECH.COM 4



5TWOSIXTECH.COM

• PCs use firmware to initialize hardware/software
• Historically: [Legacy] BIOS (c. 1981)

• Limited functionality
• Address-constrained
• No support for fancy features

• Network boot?

• Development was difficult + highly 
machine specific

• Today: UEFI (c. 2005)

• Universal Extensible Firmware Interface

A Brief History



6TWOSIXTECH.COM

• First developed by Intel (2005)

• A common standard

• Vendors implement independently

• Reference implementation: Tianocore EDK II

• Not limited to just boot-time services

• Manages runtime kernel - hardware interaction

• Most UEFI drivers run in driver execution 
environment (DXE)

• Equivalent to ring 0/kernel mode

UEFI



7TWOSIXTECH.COM

• Lots of different companies/organizations 
involved!

• Bug fixes take a long time to reach end-users

• Independent BIOS Vendors

• Original Design Manufacturers

• Original Equipment Manufacturers

• How UEFI firmware is developed/distributed is 
dependent on all of these organizations

• Annoying packaging practices (Dell 😠)

UEFI Supply Chains
UEFI Specification

Reference Implementation

IBV

ODM

OEM

Taken from Rylan’s JTB on UEFI (thanks Rylan)

https://uefi.org/specifications
https://github.com/tianocore/edk2/


UEFI Vulnerabilities 

8TWOSIXTECH.COM

• Types

• Double GetVar

• GetSet

• SMM Callouts

• SMM CommBuffer poisoned pointers

• In general

• Vulnerabilities are simple, but hard to find 
because of the supply chain



• Runtime service that gets a value from NVRAM

• NVRAM - non-volatile RAM

• Persistent key/value storage for UEFI variables

• Takes a DataSize pointer

• Input: Size of the data buffer we are writing the variable value to

• Output: # of bytes that the variable occupies

• Can be longer than the buffer

• Returns an error if it is

• Two GetVariable calls without sanitization? Potential overflow!

9

Double GetVar & GetSet



• Very similar to Double GetVar

• SetVariable

• Sets a value in NVRAM

• Consecutive calls to GetVariable and SetVariable without sanitization

• Exposes EFI variables

10

GetSet



11

Double GetVar & GetSet (cont.)

Double GetVar in action (GIF from Binarly)



• x86 processors have an execution mode called System Management 
Mode (SMM)

• Runs highly privileged code

• Can interact with all physical memory (even though it 
shouldn’t)

• Will run above hypervisors as well

• Equivalent to ring -2

• ring 0: kernel space

• Mostly invisible to the OS

• Invoked from the kernel, or from a hardware interrupt

• Can interact with SPI flash (and all other hardware)

• Install rootkits that can persist even after the OS is wiped!
12

System Management Mode



• Privilege escalation from driver execution environment (DXE) to SMM

• SMM callouts

• Executing code in SMM that lives outside of protected memory (SMRAM)

• SMM CommBuffer vulns

• CommBuffer

• Type that handles communication between SMM and DXE

• Copies variables into SMRAM

• Should check that all nested pointers in a CommBuffer are pointing into SMRAM

13

SMM vulnerabilities in UEFI



HARDEN

14

Mandatory Document Markings Go Here

TWOSIXTECH.COM

How do we find vulnerabilities in UEFI?
• Manual analysis (slow, requires expert knowledge)

• Fuzz testing (not scalable to an entire UEFI image)

• Alternatively: Use static analysis

• Trace the flow of data to potentially vulnerable 
callsites

• Build dataflow chains

• Use SMT solving to see if these chains can 
be exploited

• (I don’t know how to do this part)



• Find vulnerable UEFI drivers

• Binarly writeups

• Manual, expert analysis of UEFI drivers

• CVEs

• Download the firmware from the OEM site

• Decompress it with 7-zip (unless you’re Dell 😠) 

• UEFITool

• Tool that displays/extracts UEFI drivers in a firmware binary

• Extract the vulnerable driver, as identified by its GUID

15

Finding SMM vulnerabilities…



• Open the extracted binary in Ghidra

• Run efiSeek

• Ghidra plugin that automatically types UEFI 
structs

• Look for SMRAM descriptors

• Passed into the function that validates 
whether pointers reference SMRAM

• Flag these callsites and trace up from 
them

• Problems

• Limited intermediate languages to reason over

• Ghidra API has poor documentation

• Lack of existing tooling

16

…in Ghidra?



• (Arguably) better API with Python support

• Jython does not count, Ghidra!

• More intermediate representations to reason over

• Single static assignment

• More comprehensive internal tooling

• PILOT program: already did def/use chaining for vulnerability 
analysis

• Create a pipeline for automated vulnerability analysis

• Get binaries, extract them, and run analysis passes over them

• Use SMT solving to prune the set of possible vulnerabilities

17

…in Binary Ninja?



18

Binary Ninja-based Pipeline



• Find vulnerable callsites

• Look for accesses to a particular byte offset 
from the runtime services table

• From a callsite:

• Trace the definition of the parameter we 
want (e.g. DataSize)

• Pointers

• Trace down

• We don’t know how the value the 
pointer is referencing will change

• Functions

• If we know what it does, trace up

19

Def/Use Chaining



• Static analysis is somewhat limited when it comes to cross-driver interaction

• Want to evaluate the composability of different vulnerabilities

• More formal modeling?

• Emulation?

• QEMU (OSS)

• Simics (Intel)

• More closely replicates the underlying hardware

• Interrupts between different instructions (which QEMU can’t do)

• Leveraging the new tracing engine for SMM vulnerabilities

• Sort of implemented with Ghidra, but not well

• Generalize to other CommBuffer vulnerabilities

20

Future Plans



• Rootkits and Bootkits

• Alex Matrosov (Binarly)

• Sergey Bratus (DARPA PM for HARDEN)

• A Tour Beyond the BIOS

• Jiewen Yao (Intel)

• Also wrote Securing Firmware (on my reading list)

• SentinelOne blog

• Rylan’s excellent JTB from March on UEFI

21

References & Other Resources

https://edk2-docs.gitbook.io/a-tour-beyond-bios-mitigate-buffer-overflow-in-ue/


• Jonathan Prokos (mentor for the summer)
• Jacob Denbeaux
• Michael Krasnitski

22

Acknowledgements



23TWOSIXTECH.COM


