
Final Internship Report

Arjun Vedantham
Argonne National Laboratory

Mentor: Kevin Stutenberg

Summer 2022

Mentor Signature:



Abstract

The Advanced Mobility Technology Laboratory at Argonne National Laboratory conducts
testing of vehicles on a ”chassis dynamometer” - a device used to simulate a road surface
during a driving cycle. In order to drive the car remotely, they use a robotic driver system.
The existing control scheme for this robotic driver system uses an analog control signal to
control two electromagnetically propelled linear actuators, but this requires manual calibration
before each test cycle and provides no direct feedback data. The purpose of this project was
to migrate control of the robotic driver over to a digital, CAN protocol based control system.
After investigating new control methods, we developed a ”CAN2Serial” software package,
which is capable of accepting CAN commands from the testing equipment and translating it
into commands sent over an RS232 serial bus to the actuators. Additionally, CAN2Serial is
able to simultaneously retrieve actuator position data. This allows for more precise, repeatable,
and direct control over a vehicle during a test cycle.

CAN2Serial testing configuration

1



1 Introduction

This summer, I was tasked to come up with a CAN based control system for controlling the robotic

driver system used during chassis dynamometer testing at the Advanced Mobility Technology

Laboratory at Argonne National Laboratory. I was excited about this project because I have been

interested in robotics for a long time, and because I wanted to apply what I had learned in my

robotics programming classes to a real world problem.

2 Description of the Research Project

The Advanced Mobility Technology Laboratory is a group within the Transportation and Power

Systems division of Argonne National Laboratory, performing in depth testing of cars, trucks, and

other vehicles using ”vehicle in the loop” capabilities to quantify energy use simulated environ-

ments. To conduct vehicle in the loop testing, AMTL uses a chassis dynamometer, where a car

is mounted on rollers that simulate a driving surface. AMTL uses either direct communication

with the vehicle, or a robotic driver to press against the vehicle’s pedals in order to drive during

dynamometer testing. However, the robotic driver uses an analog control signal, which required

manual recalibration before each run, and did not provide any feedback about the actuator posi-

tion. My project was to develop a system for controlling the robot driver over a CAN connection,

which is a low level, message based protocol frequently used to communicate between different

components in modern vehicles.

3 Contributions Made to the Research Project

I started developing this new control system by reaching out to the manufacturers of the amplifier

modules used with the linear actuators that made up the core of the robot driver. After speaking

with them, I determined that there were two methods of developing this new control system. The

first involved using the Copley CANOpen C++ library, written by Copley Controls, the manufac-

2



turers of the Xenus XTL-230 amplifiers that were used in the robot driver. This allowed for control

of the actuators over CANOpen, an industry standard protocol frequently used in these kinds of

industrial automation cases. However, using this software would require an expensive license fee

and a restrictive usage agreement. The other approach involved using the serial library provided

by the manufacturer, which was freely available and did not have a license restriction. This would

involve sending messages to the amplifiers over a built-in RS232 serial interface located on the

front panel of the amplifier module. After giving a short presentation on the available options to

my mentor and some of the other researchers at AMTL, we decided to build out a software pack-

age capable of converting CAN messages from the dynamometer data acqusition controller into

messages that the amplifiers could understand.

After deciding on this path, I began exploring how to send and receive CAN messages. I orig-

inally started with a Waveshare CAN/RS485 shield, which is a printed circuit board that could be

mounted on top of a Beaglebone Black, a popular standard single board computer. However, the

Waveshare shield had poor community support, and was plagued by old, unmaintained software

packages. Shortly after this, I switched over to using a Raspberry Pi and a PiCAN 2 Duo shield,

both of which had much better documentation and community support. In addition to the Rasp-

berry Pi, I also used an Arduino Leonardo with a Sparkfun CAN shield on top as a stand-in for the

data acquisition controller system typically used by AMTL during vehicle testing.

Once these devices were able to communicate over a CAN network, I moved on to developing

software for the actuators themselves. Through the serial API, I wrote a program in that would

read and send commands from a text file, essentially a ”script” for the amplifiers to follow. Once

this was working, I start working on combining this functionality with the CAN message work that

I had previously completed. Soon, the amplifiers were able to move the actuators in response to a

CAN message that encoded the new position requested by an operator.

3



However, this software had to do more than just send translated CAN messages to the ampli-

fiers. In addition to this functionality, this software (called ”CAN2Serial”) had to poll - or regularly

request - the amplifiers for the current position of the actuators. This was because the serial API

had no mechanism for the amplifiers to send a message on their own - all communication was in

response to a sent request. It also had to be able to detect any dangerous fault cases that could

occur during operation.

Initially, I started by just setting up a script to repeatedly poll the amplifiers for their position.

According to my mentor, the desired update frequency would be 100 Hz, so CAN2Serial would

have to send a position request, receive a response, and send the resulting value over the CAN bus

in less than 10 ms. However, this process took well over ten times as long, due to a bug in the stan-

dard serial read/write functions provided by the manufacturers of this amplifier. After resolving

this issue, the CAN2Serial software was able to retrieve and send position updates in less than 10

ms, and was able to process incoming position commands in 20 ms, well within operational limits.

After this was working, I moved onto combining each of these individual tasks into a single

program. Originally, I tried to use multithreading to run these tasks concurrently. However, this

posed a problem - thread scheduling is not deterministic, meaning that programmers do not have

exact control over when a thread runs. This was problematic, because it meant that incoming CAN

commands could go unprocessed until the next time the OS scheduler placed that thread on the

CPU for runtime, causing unacceptable delays in command processing. After thinking through al-

ternatives, I rewrote the multithreaded code using an asynchronous multitasking technique, which

removed the need for thread preemption and time intensive context switches. This resulted in the

CAN2Serial package being much more responsive to new position commands while simultane-

ously reducing the downtime in between position updates sent to the data acquisition controller.

Finally, I implemented fault handling. Originally, this software was designed to quit as soon

4



as it ran into a critical error, but after doing some limited tests with some of the other researchers

at AMTL, I quickly realized that this would not be conducive for long testing runs. Instead, I im-

plemented a new fault handler that would stop CAN2Serial safely, continuously transmit an error

message on the CAN interface, and await error reset commands. Now, instead of having to log

into the Raspberry Pi and manually restart CAN2Serial through the command line, an operator

could simply ”reset” each of the errors by sending a CAN messge to the Pi indicating which errors

should be dismissed. Once all of the detected errors have been dismissed, CAN2Serial automati-

cally reboots itself and the amplifiers, allowing the operator to safely recover from an error state

without extensive intervention.

After developing these features, I worked with the other researchers in the AMTL group to test

this software on a 2019 Hyundai Sonata Hybrid that was mounted on AMTL’s two wheel chassis

dynamometer. I also gave a presentation to the other researchers detailing my work throughout the

summer.

4 New Skills & Knowledge Gained

Through this summer, I was able to apply much of the skills that I had learned in classes (particu-

larly my concurrent programming class), as well as the skills that I learned as part of UMDLoop,

an undergraduate engineering team at my school, the University of Maryland at College Park. This

included refining my skills with socket programming and basic digital electronics. In addition,

I gained new insight into developing an asynchronous, concurrent software package for use in a

real-time computing environment. I also learned a little bit about the scientific computing stack

used by AMTL, including dSPACE and LabView.

5



5 Research Experience Impact

I have been interested in pursuing graduate school to perform this kind of research and development

work, and my time at Argonne National Laboratory has only reinforced that interest. I really

enjoyed working in this capacity, and I have only become more certain about pursuing a graduate

school education in computer science and robotics.

6 Relevance to the mission of DOE

This research is critical to the mission of DOE as it focuses on improving the research environment

needed to make efficient and autonomous vehicles a reality. AMTL’s research is essential to devel-

oping autonomous driving systems that eliminate many of the inefficiencies currently associated

with road-based transportation, and my project this summer will help to make that research easier,

faster, and more accurate.

7 Acknowledgements

Thank you to my mentor this summer, Kevin Stutenberg, for his guidance and support throughout

this summer. Additionally, thank you to Miriam di Russo, who has been essential in evaluating

CAN2Serial’s functionality in both tabletop and dynamometer test configurations.

References

[1] Xenus XTL-230 Manual, Copley Controls, 2018. https://www.copleycontrols.com/

wp-content/uploads/2018/02/XTL-XSJ-Xenus_User_Guide-Manual.pdf

[2] ASCII Programmer’s Manual, Copley Controls, 2018. http://www.copleycontrols.com/

wp-content/uploads/2018/02/All-ASCII_Programmers_Guide-Manual.pdf

6

https://www.copleycontrols.com/wp-content/uploads/2018/02/XTL-XSJ-Xenus_User_Guide-Manual.pdf
https://www.copleycontrols.com/wp-content/uploads/2018/02/XTL-XSJ-Xenus_User_Guide-Manual.pdf
http://www.copleycontrols.com/wp-content/uploads/2018/02/All-ASCII_Programmers_Guide-Manual.pdf
http://www.copleycontrols.com/wp-content/uploads/2018/02/All-ASCII_Programmers_Guide-Manual.pdf


[3] BCM2385 Peripherals, Broadcom, 2012. https://datasheets.raspberrypi.com/

bcm2835/bcm2835-peripherals.pdf

7

https://datasheets.raspberrypi.com/bcm2835/bcm2835-peripherals.pdf
https://datasheets.raspberrypi.com/bcm2835/bcm2835-peripherals.pdf

	Introduction
	Description of the Research Project
	Contributions Made to the Research Project
	New Skills & Knowledge Gained
	Research Experience Impact
	Relevance to the mission of DOE
	Acknowledgements

